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The problem of nonstationary drift of drops under the action of time-varying thermo- 
capillary and mass forces, with a constant temperature gradient given at infinity, was 
treated in [i] within the Stokes approximation. It was assumed that the motion starts with 
the fluid at rest, and occurs with axial symmetry. 

Small Peclet numbers were assumed in [i] in solving the thermal problem. Therefore, 
the temperature field and the distribution of the surface tension coefficient generated by 
it along the surface of the drop have been independent of the fluid motion. A similar in- 
dependence also occurs in the general case of temperature and concentration fields (or any 
other factor on which, generally speaking, the surface tension depends), when the Peclet 
number is small and the convective heat or material transport can be neglected. Formulating 
this situation, as was done in [2] for the stationary case, the nonstationary drift of drops 
is treated in the present paper, when the surface tension coefficient is given as a known 
function of time and of the points on the surface of the drop. Axial symmetry was not as- 
sumed in that case, and the integrodifferential equation derived here within the Stokes ap- 
proximation for the velocity of motion of the drop center of mass has a vector form. To 
apply the results obtained, this function of surface tension must be calculated in each 
specific case. 

Let a drop of a viscous incompressible fluid be located in another viscous incompress- 
ible fluid, filling all space. Consider the problem of nonstationary drop motion under the 
action of mass and capillary forces. It is assumed that the mass force is caused by a grav- 
itational field with acceleration g (t), arbitrarily varying with time t, both in magnitude 
and in direction. The surface tension coefficient o(t, e, ~) is given as function of coor- 
dinates 8, ~ on the drop surface and of time, and its nonconstancy leads to the occurrence 
of capillary forces. 

In the solution we use the Stokes approximation, and assume that the motion starts from 
a fluid state of rest, with constant densities Pi and dynamic viscosities ~i of the fluids 
(here and in the following the subscripts i = i, 2 refer to the exterior fluid and to the 
drop, respectively). It is assumed that the surface tension is quite large, so that the 
drop shape is only insignificantly nonspherical. In that case, in particular, o ~ >> o', 
where o ~ is of the order of the quantity, and o' is of the order of variation of the sur- 
face tension coefficient on the surface of the drop [both these quantities are determined by 

the function 0(t, 8, ~)]. 

The treatment is carried out in a noninertial reference system, moving translationally 
with the drop center of mass. The radius r is measured from it in the spherical coordinate 
system used here (r, e, ~) (e, ~ are the meridional and azimuthal angles). 

In the mathematical formulation of the problem we use the following dimensionless quan- 
tities. We choose the drop radius a to be the scale of distance, the quantity o'/Dl for 
velocity, pla~/~1 for time, and o'/a for pressure. Instead of the gravity acceleration 
force g(t) we introduce the dimensionless quantity ~i(t) = pla2g/o ' �9 For the dimensionless 
time and radius we use the preceding notation. In the dimensionless variables the equa- 
tions, initial and boundary conditions for the radial component of the field velocity Uir 
and pressure Pi (i = i~ 2) are then represented in the form 

Oulr 0]21 t 
c~t Or + r A(rul~);  ( 1 )  

v_ ~ -~-=a%T --,~-~ ap~+71 A (ru~); (2) 
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kpz = 0 (i = t,2); 

r - +  co, ul~-+ - - (u  �9 er), P l ~  O; 

r--~ O, u2~ < cr p 2 <  oo; 

r = I x  /g l r  ~ /Z2r ~ 0 ;  

O(r2u1~)/Or = O(r~u~_r)/Or; 

(20~Or - -  02 /Or2){r2(u~  - -  gu2r)} "+- Arv = 0; 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

.f {-- p~ + P2 + (P-- t , ( ~ - -  ~) .e , .  + 2~,.(ul, .-  ~u2,.)- 2V} ~,  dP = 0 ;  (9) 
F i 

t = O, ui~ = 0 (i = 1,2), u = 0, (10) 
p =oJp~ ,  ~ =~u2/~, , v =v~/v~, vi - PilP~ ( i =  t,2). 

E q u a t i o n s  ( 1 ) ,  (2)  a r e  t h e  n o n s t a t i o n a r y  S tokes  e q u a t i o n s  f o r  t h e  r a d i a l  v e l o c i t y  com- 
p o n e n t s ;  in  t h a t  e a s e  t h e  a n g u l a r  components  u i 0 ,  u i r  have  a l r e a d y  been e l i m i n a t e d  from them 
by means of  t h e  e q u a t i o n  of  c o n t i n u i t y  f o r  t h e  i n c o m p r e s s i b l e  f l u i d  

t a (r2u~) § l a 1 Oui~ 
r20r ' r s i n O  o-0 (sinOui~ + r s i n O  dqo = 0 .  (ll) 

Equations (3) are obtained by taking the divergence of both sides of the nonstationary 
Stokes equations and taking into account (ii). The behavior at infinity is reflected in 
condition (4), where u (t)is the dimensionless velocity of drop motion, and e r is the unit 
radial vector. The absence of singularities at the origin of coordinates is noted in Eq. 
(5). The boundary conditions at the surface of the drop are represented in (6)-(9). 

Condition (7), as well as (8), in which y = (o(t, @, ~) - o~ ', and the operator AF, 
the angular part of the Laplacian, are obtained as follows. We write the continuity condi- 
tions of the tangential velocity components and the tangential stresses at the drop surface: 

[a%~ a%o ) a7 (12) {e~r e.lo - ~ r 1 6 2  + u2o + =0; 
u~o=u2~ \ao +--07-, " - u ~ ~  -~r -- 

\sin---O a--~- q- ~ --  u2~ + sin 0 0~ 

We apply to equality (12) the operator (sin@)-i(8/8@)sine, and to (13) the operator 
(sin @)-13/89, and add the results in pairs. Eliminating then the angular velocity compon- 
ents by means of (ii), with account of (6) we obtain (7) and (8). 

In the boundary condition of the balance of normal stresses (9) one multiplies by an 
arbitrary spherical function of first order r 9 ) and integrates over the whole surface 
of the drop Fi(dF = sin @d@dg). The meaning of this integration consists of the following. 
Since in the present study we neglect the deviation of the drop shape from spherical, the 
boundary condition for the normal stresses must be omitted, replacing it by the cruder con- 
dition of balance of forces acting on the drop as a whole (as was done, in particular, in 
[3]), which is equivalent to a large extent to the integration performed here (in the cal- 
culation of forces acting on the drop one must also integrate the stress over the whole sur- 
face of the drop). 

If, however, one writes down the direct condition for the normal stresses, one must 
inevitably contain in it a term proportional to the deviation E(@, 9) of drop shape from 
the spherical r = 1 (see, for example, [3]). In expanding this term in spherical functions 

q)~, = ~ (a=~ cos kcp + b,k sin k~) P~ (cos 0) (n = 0 i ,  2 . . . .  ), 
h = 0  

(14) 

where Pnk(z ) is the associated Legendre function, functions of zeroth (n = 0) and first 
(n = i) orders must be absent, since the volume of the drop does not change with deformation, 
and the origin of coordinates remains primarily at the center of mass of the drop. There- 
fore, in performing an integration such as (9) the term corresponding to shape deviation 
from spherical vanishes, and the description (9) is quite correct. We note that for our 
treatment condition (9) is more convenient than the condition of balance of forces acting 
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on the drop as a whole, ordinarily used under these circumstances. The fact that the motion 
starts from the state of rest is expressed in the initial conditions (i0). 

The main purpose of the present study is to express the velocity of drop motion u(t) 
in terms of known characteristics of the mass and capillary forces g (t) and o(t, 0, ~), which 
is implemented by solving the problem (i)-(i0). As will be seen from the following, to 
achieve this purpose it is not quite necessary to find the velocity field in complete form. 
For example, it is not necessary to treat the angular velocity components, but restrict the 
discussion to the radial component only and to the pressure, for which the problem (i)-(i0) 
is formulated. 

We denote the Laplace transforms of all time-dependent functions appearing in problem 
(i)-(i0) by the preceding symbols With asterisks. In that case, instead of the time t, the 
given functions depend on the Laplace transform parameter s. 

Taking into account the initial conditions (I0), from (1)-(9) we obtain the following 
problem for the transformed quantities: 

* @'1 t 
s . . -  o~ + V A ( r u ; )  ' 

--1 * p - 1 0 p *  t * * 
v s u 2 ~ = - -  - t - - - A ( r u 2 ~ ) ,  Ap~ = 0  ( i = t ,  2); ~ Or r 

* ,~(u)  * 
/ ' - - - > - 0 o ~  ~ / l r - - - - > - q )  1 ~ pl---+0, 

r -+0 ,  u ~ < o o ,  P 2 < z r  r = L  u l r = u 2 ~ = 0 ,  
') * 2 * O ( r " u ~ r ) / O r = O ( r u : ~ ) / O r ,  

( 2 o / o ~ -  a~ /o~){~  ( u ~ . -  ~u~.)} + Ar~,* = o; 

; {  . . o . .  ,} 
Y 1 

The first order spherical functions appearing in (16), 
tions 

q)(~") = - -  u * .  e~, ~ ( ~ ;  = n*" e~. 

(15) 

(16) 

(17) 

(17) are determined by the rela- 

A solution of Eq. (15), without singularities on the axis of the spherical coordinate 
system, is sought in the form of an expansion in the spherical functions (14). In that case, 
as seen from the boundary condition (17), to determine the required dependence between u(t), 
N'(t), and ~(t, 0, T) it is sufficient to consider only one component of the total solution, 
corresponding to the mode with n = i. A solution of Eq. (15) for this mode, satisfying the 
boundary conditions (16), is 

) ( ) u ~ =  t+a~-G(Vsr)§ + a~ r ( V - s r ) + - ~  

sa2 t m(v) . sa: i (1)(1 ~ ) + - - ~ 1  , Pl  = - - s t  @ -~- 2 r 2 

* _ psblrq)i '~) _ psblrq)? >, D2 

t r t 
where the constants al, a.2, a t, a 2, b 1, 52, b I, b~ are determined by the relations 

a 2 = - -  l - - a , G (  Vs) ,  a ~ = - - a l a (  Vs),~ b~= --b~F(V~--~s), 

b ;  = - b ; F  

~, = - 3 ~ ( V ~ )  . . . . .  2 + ~ .  ( V ~ - - ~ )  
3 + V ;  + ~H (V~---~)  ~ 

+ V ;  + ~ ( V~--~) '  
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b~ = 3 (t 4- -]/~) 
( 3+  v ' ;  + ~R (V~---~))  ( V~---~, ,~' ( V~--~A - r (V~ - -~ ) )  ' 

, 2 

b~ = (3 + 1/;  + ~ ( l /~ - - r ; ) )  ( 1/,--=~ F' ( l / , - - - i ; )  -- F (1 / , - - -~) )"  
(19) 

The function Cz(~) is generated by expanding ~* in spherical functions as the corre- 
sponding mode with n = i of this expansion. The functions F, G, H appearing in (18), (19) 
are determined as in [i]: 

F (z) ~ z ,,~ z z ~ '~ 

ziF" (z) 
H (z) = zF '  (z) - -  F (z)" 

Substituting in (17) the solution (18) with account of (19) leads to the relation 

O= + e j o ~ l  + -- (s) + ( 9 - - 1 )  (20) 

We m u l t i p l y  t he  e x p r e s s i o n  in (20) by r and t ake  i t s  g r a d i e n t .  In t h a t  case ,  us ing  an 
identity which is easily proved, and starting from properties of spherical functions 

(,,c~(v) ~ 3 I V(rr v(rr V,,~, , = ~ .  v~v*dr 
F 1 

(V F is the surface gradient operator), we finally reach the relation 

0 = - - (  t + 9 )  su* - -  B *  (s) u* - -  C* (s) ~-~ f V v ? *  dF  + (p - -  l)  q*. (21) 

Here the coefficients B*(s), C*(s) are determined as in [i]: 

c* (~,) 3 + y ;  + ~• ( V~---~)' :z 

If the problem becomes such that one must find the velocity of motion of the drop under the 
action of known mass and capillary forces, then expression (21) is conveniently rewritten in 
the form 

u* (s) = - -  C* (s) ~ Vr'~* d F  + (p - -  t ) , r *  ' p l  s + B *  - 1  T + (s) 
Y'I 

(22) 

and determining the motion reduces to reconstructing the original from the transform (22). 

We turn in (21) to the originals, and assign the relation obtained in that case by the 
form of Newton's second law 

t 

,ou' (0  = - ~7 u' (t) - b (t - t ,)  u' (tl) dl 1 ~ ~ + ~ u (t) - -  
0 

t 

9 Vry( t )dF- - -~  c ( t - - t ~ )  Vry(t,)dF dt~i(p--l)~l( t) ,  

(23) 

where, as in [i], the coefficients B*(s) and C*(s) are represented in the following form, 
taking into account their asymptotic behavior at s + 

B*(~) = B*(O) + sb*(s), C*(~) = C*(~)  + ~*(s), 

B* (0) = 3 2 + 3~ C* (oo)  = 3 
2 ~+ff '  i + 0]/~" 
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Following [i], we note that the asymptotic of originals of the functions b*(s), c*(s) thus 
derived is at t § 0 

while for t ~ 

b (t)  = 9 P -I/~' 1 3 (p ]/7v - -  2) t 
2~+vV;V~  +~ (~+vV:;) ~ v~+o( t ) ,  

t {2+3[~  2 t b(t) = - f  I , ~ j  ~ t  + O(t-a/2)' c(t)= -- 2~-3~ i 
- -  + 0 (t-~/~).  6 (t + ~)~ l / ' - ~  

Relation (23) is an integrodifferential equation for motion of the drop. 

The expressions are somewhat simplified relative to the case of a drop in the special 
cases of a solid sphere and of a bubble. Thus, one can write down explicitly the originals 
b(t), c(t), and the integrodifferential equation reduces to a differential equation. A dis- 
cussion of these problems can be found in [i]. Everything is similar in the situation con- 
sidered. 

As already noted, Eq. (23) has been written in the form of Newton's second law (in di- 
mensionless form). On the left-hand side of (23) we have the product of the drop mass and 
its acceleration, while on the right-hand side we have forces acting on the drop. To repre- 
sent these forces more clearly we transform in (23) to dimensional variables, multiply by 
4~/3, and obtain 

t 

4~ ~203 du .~ ~1a3 du 4 ~ [ ' ] ( t - - t l ! . ) d u "  t " 
0 

(24) 
2+3~ 3 f V r ~ d F - - ~  c a2 

|/i 
a3g,  

where the preceding notations are used for the dimensional velocity, time, and area element 
(dr = a 2 sin 0d0dT). 

The first term on the right-hand side of (24) is the force resulting from the effect of 
the associated masses, the second is the Basset force, the third is the Stokes force, the sum 
of the fourth and the fifth is the capillary force, and the sixth is the sum of the gravity 
and exclusion forces. We note that, unlike [i], here the given state has a substantial vec- 

tor character. 

We further consider the case in which the gravitational field g(t) and the distribution 
of the surface tension coefficient a(t, 0, ~) at t ~ ~ lead to some stationary values g and 

o(0, ~), i.e., 

lira sg* (s) = g, lira sa* (s, 0, ~) = ~ (0, ~). (25)  
S~0 8~0 

In that case it is interesting to find, for example, the limiting expressions for the capil- 
lary force and the velocity of drop motion. Multiplying the transforms of these quantities 
[in dimensionless form this means (22) and the capillary terms in (21)] by s and taking the 
limit s § 0, with account of (25) we obtain (in dimensional form) 

1 [ Vr~ dF; (26) F~ = 2 (f § 8) 
ra  

u =  3 (2_t_ 3~) ~ l g - -  4na~l (2q_ 3~) j Vro dF. (27) 
ra  

The expression for the stationary capillary force (26) coincides totally with that obtained 

in [2]. 
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For the skilled reader we note that, in principle, the basic results obtained here by 
means of a quite simple generalized discussion, based on the linearity of the problem and on 
the importance of only a single mode of the solution for describing the motion of the drop 
center of mass, could be written down directly, starting from Eqs. (5.1), (5.2) of [i], and 
treating independently the motion along each of the three mutually perpendicular coordinate 
axes. However, the authors have preferred not to pursue this path. 

If the distribution of the surface tension coefficient o(e, ~) and the gravitational 
field g are from the very beginning constant in time, the original expression (22) can be 
analyzed in more detail in several limiting cases (see [4, Sec. 5, Chap. 4]). 

Further, following Landau and Lifshitz ([5, Problem 7, Sec. 24]), consider the problem 
without initial conditions. As applied to the situation investigated in the present paper, 
it can be formulated as follows: find the resistance force (or, better here, the hydrodynam- 
ic force) acting on the drop, if the drop velocity and the distribution of the surface ten- 
sion coefficient are known functions of time u (tl) and a(tl, 8, ~) at -~ < t I < t. The an- 
swer can be written down directly on the basis of the right-hand side of (24): 

= - -  -5- p l a  -d-f 3 ~ l a  b - d y ,  I) dt~ - -  2a91a u - -  
(28) 

Relationship (28) is in some sense the generalization of the corresponding equation in [5]. 

If the nonconstancy of the surface tension is related to inhomogeneous fields of tem- 
perature, concentration, etc., one can carry out further specification of the results ob- 
tained, finding these fields and knowing the shape of the thermodynamic dependence of the 
surface tension coefficient. Here it is substantial that the Peclet numbers are small, 
i.e., the distributions of temperature, concentration, etc., implying also that the surface 
tension is independent of the fluid motion or else our treatment is not uniformly correct. 
Such a capability of the results of the present study can be found, for example, in the re- 
sults of [i], as well as the corresponding results for nonstationary thermocapillary drop 
motion under the action of radiation (which was investigated in [3] within the stationary 
statement) and for nonstationary thermocapillary drop motion in an external constant temper- 
ature gradient for a nonlinear temperature dependence of the surface tension coefficient 
(which was treated in [6] within the quasistationary approximation). 

i, 

2. 

3. 

4. 
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